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[1] Hydroclimatological time series often exhibit trends.
While trend magnitude can be determined with little
ambiguity, the corresponding statistical significance,
sometimes cited to bolster scientific and political argument,
is less certain because significance depends critically on the
null hypothesis which in turn reflects subjective notions
about what one expects to see. We consider statistical trend
tests of hydroclimatological data in the presence of long-term
persistence (LTP). Monte Carlo experiments employing
FARIMA models indicate that trend tests which fail to
consider LTP greatly overstate the statistical significance of
observed trends when LTP is present. A new test is presented
that avoids this problem. From a practical standpoint,
however, it may be preferable to acknowledge that the
concept of statistical significance is meaningless when
discussing poorly understood systems. Citation: Cohn,

T. A., and H. F. Lins (2005), Nature’s style: Naturally trendy,

Geophys. Res. Lett., 32, L23402, doi:10.1029/2005GL024476.

1. Introduction

[2] Hydroclimatological records (henceforth ‘‘HC’’) such
as discharge and air temperature are increasingly examined
for evidence of a structural shift or trend, defined as an
upward or downward tendency in the data over time. There is
typically little argument about the magnitude of observed
trends whether estimated by eye or statistical methods
[Craigmile et al., 2004] (although D. Koutsoyiannis (per-
sonal communication, 2005) has expressed doubts about the
existence of a rigorous and consistent definition of trend).
The statistical significance, or p-value, associated with an
observed trend, however, is more difficult to assess because it
depends on subjective assumptions about the underlying
stochastic process [von Storch and Zwiers, 1999; Woodward
and Gray, 1993;Weatherhead et al., 1998]. In this paper, we
consider the idea introduced by Hurst [1951] and discussed
by others [Mandelbrot and Wallis, 1969a; Klemeš, 1974;
Lettenmaier and Burges, 1978; Potter, 1976; Potter and
Walker, 1981; Hosking, 1984; Bras and Rodriguez-Iturbe,
1985; Vogel et al., 1998; Koutsoyiannis, 2000] that HC
records are realizations of physical processes whose behavior
exhibits long-term persistence (LTP). Such behavior is
sometimes modeled as fractional Gaussian noise (fGn) or
fractionally differenced ARIMA (FARIMA or arfima) pro-
cesses. The purpose of this paper is not to evaluate claims
related to LTP, but rather to explore what LTP, if present,
implies about the significance of observed trends.

2. A Family of Trend Models

[3] We assume that an HC record, ~Y � (Y1,. . ., YN)
0,

arises from a stochastic process, and that the process can be

partitioned into a deterministic linear trend component and a
stochastic component [Kendall et al., 1983; Craigmile et
al., 2004] such that

Yt ¼ mþ b � t þ �t ð1Þ

where t represents time (conveniently discretized into
(1, 2,. . ., N)), m is a location parameter, b is the trend
coefficient (the change per unit time), and �t represents the
‘‘error.’’
[4] The errors are assumed to be multivariate normal with

zero mean and covariance matrix 2. The LTP, autoregres-
sive, or moving average structure, if present, is completely
characterized by 2. To simplify the analysis, we constrain
2 to be a function of F (a lag-one autoregression (AR(1))
parameter); d (the fractional differencing parameter, some-
times described by H, the Hurst coefficient, where H = d +
0.5); Q (a lag-one moving average (MA(1)) parameter); and
S (a scale parameter). The complete stochastic process
corresponding to equation 1 is denoted by Sb,{f,d,q}(t),
where the parameters m and s can be omitted without loss
of generality.
[5] Stationarity is an important issue if we wish to

determine whether long-term ‘‘excursions’’ observed in
the data should be attributed to ordinary process dynamics
around a fixed mean versus permanent structural changes to
the process. Precise conditions for stationarity of Sb,{f,d,q}(t)
are given by Kendall et al. [1983]; however, necessary
conditions include b = 0 and d < 0.5.
[6] All stationary stochastic processes, S0,{f,0,q}(t), where

d = 0, exhibit the following property: For observations far
apart in time, the correlation between S(t) and S(t + k) is
bounded by: rk � cj{k}j as k ! 1 where c is a constant and
jcj < 1 [Koutsoyiannis, 2000], which implies short-term
persistence in the sense that the covariance structure
involves exponential decay.
[7] The stochastic process S0,{f,d,q}(t), 0.5 > d > 0,

exhibits long-term persistence [Hosking, 1984]. The corre-
lation between observations is given by [Hosking, 1984]:
rk=G(1� d)G(k+ d)/(G(d)G(k+1�d))
G(1�d)/G(d)k2d�1

where G( ) denotes the complete gamma function. When
0.5 > d > 0, the correlation declines ‘‘slowly’’, as a power
function in k. More important, as Mandelbrot and Wallis
[1969b, pp. 230–231] observed, ‘‘[a] perceptually striking
characteristic of fractional noises is that their sample
functions exhibit an astonishing wealth of ‘features’ of
every kind, including trends and cyclic swings of various
frequencies.’’ It is easy to imagine that LTP could be
mistaken for trend.

3. Implications for Hypothesis Testing

[8] Trend assessment seeks to answer two questions:
[9] 1. What is the approximate magnitude of the trend, b?
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[10] 2. Given what we believe about the stochastic
process, how likely is it that we would have observed ~Y,
or something more extreme, if the true value of b is 0?
[11] The standard procedure for addressing these ques-

tions is to fit the parameters in equation 1 to the observed ~Y
and obtain an estimate b̂. The corresponding p-value, which
is the probability of observing a value at least as extreme as
b̂ if b = 0, is then computed. This is a straightforward
exercise if we know the sampling distribution of b̂ under the
null hypothesis (H0).
[12] The simplest case involves processes with white

noise errors (S0,{0,0,0}(t)), for which an efficient test for
linear trend can be obtained by fitting an ordinary least
squares (OLS) regression model with time as a predictor
variable and testing to see if the fitted coefficient on time, b̂,
differs significantly from zero. This test is denoted Tb,{0,0,0},
and it is the uniformly most powerful unbiased (UMPU) test
if in fact the process is Sb,{0,0,0}(t) [Kendall and Stuart,
1979].
[13] For more complicated stochastic processes, such as

Sb,{f,0,0}(t) and Sb,{0,d,0}, the trend slope is computed by
maximum likelihood using an approximation to the likeli-
hood function [Hosking, 1984]. Statistical significance is
computed using likelihood ratio tests [Kendall and Stuart,
1979], which are discussed in the online auxiliary materials1.
The tests are denoted Tb,{f,0,0}, Tb,{0,d,0}, etc. Craigmile et al.
[2004, 2005] consider a wavelet-based fitting method for
essentially the same model.
[14] It happens that the standard likelihood ratio test

(LRT) has less than ideal statistical properties. In particular,
for large values of d the LRT does not come close to
achieving its nominal a = 5% level when H0 is true, even
for very large sample sizes. It is easy to ‘‘adjust’’ the LRT
[Kendall and Stuart, 1979], however, to ensure that the
approximate type I error rate is achieved. The adjusted test

(ALRT), denoted Tb,{0,d,0}
A , is discussed in detail in the

online auxiliary materials.

4. Trend Test Performance

[15] Monte Carlo experiments were conducted using the
R programming language and the fracdiff package. The
fracdiff.sim routine permits generation of simulated
S0,{f,d,q}(t) trend-free time series. Linear trends can be
superimposed on the S0,{f,d,q}(t) series to generate
Sb,{f,d,q}(t) series for arbitrary b.
[16] The fracdiff package includes a routine, fracdiff, for

fitting the parameters of an S0,{f,d,q}(t) process to data. This
routine was embedded in a loop (using the R optimize
routine) to enable fitting the trend coefficient, b, by maxi-
mizing the value of the likelihood function (which is
computed by fracdiff).
[17] The Monte Carlo approach used here requires

simulating an approximation of the natural processes, and
this requires some assumptions. In particular, the value of
d, or at least a range of reasonable values for d, must be
specified. Beran and Feng’s [2002] 663 year flow record
for the Nile River exhibits d = 0.39. Hurst [1951] found
that d = H � 0.5 
 0.23 for a variety of geophysical time
series. Vogel et al. [1998] looked at the Hurst coefficient
corresponding to the USGS’s Hydroclimatic Data Network
(HCDN) data set [Slack and Landwehr, 1992], and found
that, given the shortness of the records, the correlation
structure could be explained either by LTP or by non-LTP
Box-Jenkins ARMA processes. Assuming that the correla-
tion structure was due exclusively to LTP, Vogel reported
that the interquartile range of d for streamflow records in
the United States was approximately (0.3–0.4). To ensure
that the range of simulated populations could represent
the range of characteristics of data observed in HC data, 35
separate experiments were run comprising all combinations
of samples of size N = {100, 200, 300, 400, 500, 1000,
2000} and fractional differencing values of d = {0, 0.1, 0.2,
0.3, 0.4}.

4.1. Type I Error Rates

[18] The first set of experiments was designed to deter-
mine the true type I error rate (for a nominal 5% test) for
each of the trend tests as a function of the true value of d
and N. Time series were generated without trend (i.e., b =
0). Four trend tests were used to determine if a trend was
present at the a = 5% level: Tb,{0,0,0} (white noise); Tb,{f,0,0}
(autoregressive); Tb,{0,d,0} (LRT with fractional differenc-
ing); Tb,{0,d,0}

A (ALRT with fractional differencing).
[19] Figure 1 depicts the actual type I error rates (a = 5%

test), for each of the four tests, as a function of the true value
of d and the sample size N. For small d, all of the tests
exhibit type 1 error rates in the ‘‘white’’ contour – in the
range 2.5% to 10% – reasonably close to the nominal level
of 5%. For d � 0.3 (a plausible level for HC processes),
however, the type I error rates exceed 10% for all but the
ALRT test, and generally exceed 50% for Tb,{0,0,0} regard-
less of sample size. This is indicated by contours depicted in
increasingly dark colors.
[20] It is possible to condense Figure 1 into a single graph

because the results do not vary substantially with sample
size (N). Figure 2 depicts the case where N = 100, and
shows clearly that the standard trend tests, particularly

Figure 1. Observed type 1 error rate for trend tests at a =
5% level, as function of sample size (N) and fractional
difference parameter (d). From upper left to lower right, the
four contour plots correspond to: Tb,{0,0,0}; Tb,{f,0,0};
Tb,{0,d,0}, and Tb,{0,d,0}

A . Note that the white areas in the
plots indicate type 1 error rate between 2.5% and 10%,
which is about the nominal level.

1Auxiliary material is available at ftp://ftp.agu.org/apend/gl/
2005GL024476.
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Tb,{0,0,0}, become increasingly likely to find statistical
significance as d increases. It is worrisome that when LTP
is present, and well within the range observed for many
natural phenomena (d 
 0.35), the commonly used OLS
trend test (Tb,{0,0,0}) is likely to report significant trends
about half the time when we know there is no trend in the
stochastic process. The AR(1) trend test (Tb,{f,0,0}), though
better, has a type 1 error rate 5 times larger than the nominal
value when d = 0.4. The LRT (Tb,{0,d,0}) is better still,
although its type I error rates are close to 15% in some
cases. Among these tests, only the ALRT test (Tb,{0,d,0}

A )
comes close to achieving the nominal a = 5% type 1 error
rate when substantial LTP is present.

4.2. Power and Type II Error Rates

[21] Figure 3 shows power curves for each of the four
trend tests when no LTP is present (d = 0). These curves
indicate the probability of rejecting H0 when it is false or,

stated differently, the probability of correctly identifying a
trend when a trend is, in fact, present. The standard ‘‘OLS’’
test, Tb,{0,0,0}, is known to be optimal in this case. The
power curves are plotted as a function of the real trend
(expressed in terms of the nearly invariant b =

ffiffiffiffiffiffiffiffiffiffiffi

s2N3
p

b) for
a sample size of N = 100 and no fractional differencing (d =
0). The most powerful test in this case is Tb,{0,0,0}, and as
long as f, d, and q are all known to be zero, there is not
much doubt about which test to use. It is noteworthy,
however, that all of the tests, and particularly Tb,{0,d,0}

A , are
only slightly less powerful than Tb,{0,0,0} at detecting a real
trend in the absence of LTP. Thus, the penalty for using the
alternative tests is small.

5. An HC Example

[22] Figure 4 presents annual departures from the long-
term mean in northern hemisphere surface air temperature
(‘‘NHT’’) during the last century and a half [Jones et al.,
1999]. To gain some perspective on the two issues discussed
in sections 3 and 4, we can apply trend tests to this well
known data set whose LTP and trend properties have been
considered by Smith [1993], Smith and Chen [1996], Beran
and Feng [2002], and Craigmile et al. [2005].
[23] Table 1 contains estimates of the trends and

corresponding p-values for the tests discussed in section 3

Figure 2. The probability of rejecting H0 when H0 is true
as a function of d for the case N = 100.

Figure 3. Power curves indicating the probability of
rejecting H0 when H0 is false, as function of true value of
trend magnitude b�

ffiffiffiffiffiffiffiffiffiffiffi

s2N3
p

b for the case d = 0 and N = 100.

Figure 4. Annual departures from the period-of-record
mean northern hemisphere temperature in degrees C, 1856–
2002, with least squares fit (red line) and loess smooth
(black line).

Table 1. Estimates of Trend Magnitudes and p-Values Corre-

sponding to Various Models Fitted to the Annual Northern

Hemisphere Temperature Departure Data, 1856–2002

H0 Process Test b̂a p-Value

White noise Tb,{0,0,0} 0.0045 1.8e-27
MA(1) Tb,{0,0,q} 0.0046 1.9e-21
AR(1) Tb,{f,0,0} 0.0047 5.2e-11
LTP Tb,{0,d,0} 0.0050 4.8e-3
LTP Tb,{0,d,0}

A 0.0050 9.4e-3
ARMA(1,1) Tb,{f,0,q} 0.0053 1.7e-4
LTP + MA(1) Tb,{0,d,q} 0.0045 7.2e-2
LTP + AR(1) Tb,{f,d,0} 0.0045 7.1e-2

aTrend magnitude, b̂, is expressed in units of 	C/year.
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applied to the N = 149 temperature observations. All of the
tests report nearly the same estimated trend magnitude (b̂),
which ranges from 0.0045 to 0.0053 	C/year. As far as the
magnitude is concerned, it makes little difference which test
is used. Choice of trend test, however, does matter when
computing trend significance. The simplest test, Tb,{0,0,0}
(which assumes no LTP), finds strong evidence of trend, a
p-value of 1.8 * 10�27. Tb,{f,0,0} (which allows for short-
term persistence) yields a p-value of 5.2 * 10�11, 16 orders
of magnitude larger and still highly significant. The p-value
corresponding to either Tb,{0,d,q} or Tb,{f,d,0}, an unadjusted
LRT trend test that considers both short-term and long-term
persistence, is about 7%, which is not significant under
the null hypothesis. In changing from one test to another,
25 orders of magnitude of significance vanished. This result
is somewhat troubling given the uncertainty about the sto-
chastic process and consequently about which test to rely on.

6. Discussion and Conclusions

[24] The problems with significance testing are well-
documented [McCloskey, 1995; Nicholls, 2000], and signif-
icance testing for HC trends is particularly problematical
because we do not know what null hypothesis to use.
Because statistical tests are proofs by contradiction, any
inconsistency between the null hypothesis and the natural
system can itself lead to rejection of the null hypothesis. As
demonstrated in section 4.1 above, rejection of H0 can occur
because b 6¼ 0 (the hoped for explanation) or because d 6¼ 0
and the trend test does not recognize the possibility of LTP.
In short, the presence of LTP in a stochastic process can
induce a significant trend result when no trend is present, if
an inappropriate trend test is used.
[25] The question remains whether natural HC processes

in fact possess LTP. The idea was introduced more than 50
years ago by Hurst [1951], and has been debated ever since
[Mandelbrot and Wallis, 1968; Klemeš, 1974; Potter and
Walker, 1981; Hosking, 1984; Loucks et al., 1981; Kout-
soyiannis, 2000, 2003]. Hurst’s fundamental finding has
neither been discredited nor universally embraced, but
persuasive arguments have been presented (for discussion
and additional references, see Koutsoyiannis [2003]). Given
the LTP-like patterns we see in longer HC records, however,
such as the periods of multidecadal drought that occurred
during the past millennium and our planet’s geologic history
of ice ages and sea level changes, it might be prudent to
assume that HC processes could possess LTP.
[26] In any case, powerful trend tests are available that can

accommodate LTP [Hosking, 1984; Craigmile et al., 2005].
In particular, Hosking [1984] developed a unified approach
for modeling fractional Gaussian noise as a generalization of
ARIMA models [Box et al., 1994] and provided a practical
technique for fitting data exhibiting LTP. Moreover, the
ALRT test presented here, which is based on Hosking’s
approach, is both accurate (in the sense that it comes close to
achieving its nominal a-level), and nearly as powerful as the
commonly used OLS procedure when applied to processes
with little or no persistence. It is therefore surprising that
nearly every assessment of trend significance in geophysical
variables published during the past few decades has failed to
account properly for long-term persistence.
[27] These findings have implications for both science

and public policy. For example, with respect to temperature

data there is overwhelming evidence that the planet has
warmed during the past century. But could this warming be
due to natural dynamics? Given what we know about the
complexity, long-term persistence, and non-linearity of the
climate system, it seems the answer might be yes. Finally,
that reported trends are real yet insignificant indicates a
worrisome possibility: natural climatic excursions may be
much larger than we imagine. So large, perhaps, that they
render insignificant the changes, human-induced or other-
wise, observed during the past century.

[28] Acknowledgments. This paper benefited significantly from
comments by M. Beran, W. Kirby, D. Koutsoyiannis, K. Potter,
G. Schwarz, and S. Vecchia.
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